Factorization of strongly (p,σ)-continuous multilinear operators
نویسندگان
چکیده
منابع مشابه
Completely Continuous Multilinear Operators on C(k) Spaces
Given a k-linear operator T from a product of C(K) spaces into a Banach space X, our main result proves the equivalence between T being completely continuous, T having an X-valued separately ω∗ − ω∗ continuous extension to the product of the biduals and T having a regular associated polymeasure. It is well known that, in the linear case, these are also equivalent to T being weakly compact, and ...
متن کاملTransference of Multilinear Operators
We introduce the notion of transference (k + 1)-tuples of strongly continuous mappings defined on an amenable group G. We use these tuples to transfer boundedness properties of multilinear operators from products of Lebesgue spaces into Lp and weak Lp. 0. Introduction and statement of results Fix an integer k ≥ 2. Let G be an amenable group and (M,dμ) a measure space. For 0 ≤ j ≤ k, let 0 < pj ...
متن کاملMultilinear Localization Operators
In this paper we introduce a notion of multilinear localization operators. By reinterpreting these operators as multilinear Kohn-Nirenberg pseudodifferential operators, we prove that these multilinear localization operators are bounded on products of modulation spaces. In particular, by assuming that the symbols of the localization operators belong to the largest modulation space, i.e., M , we ...
متن کاملAnalytic families of multilinear operators
We prove complex interpolation theorems for analytic families of multilinear operators defined on quasi-Banach spaces, with explicit constants on the intermediate spaces. We obtain analogous results for analytic families of operators defined on spaces generated by the Calderón method applied to couples of quasi-Banach lattices with nontrivial lattice convexity. As an application we derive a mul...
متن کاملApproximations of Strongly Continuous Families of Unbounded Self-Adjoint Operators
The problem of approximating the discrete spectra of families of self-adjoint operators that are merely strongly continuous is addressed. It is well-known that the spectrum need not vary continuously (as a set) under strong perturbations. However, it is shown that under an additional compactness assumption the spectrum does vary continuously, and a family of symmetric finite-dimensional approxi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Linear and Multilinear Algebra
سال: 2013
ISSN: 0308-1087,1563-5139
DOI: 10.1080/03081087.2013.839677